

SEBASTIAN KIEßLING

SUCCEEDING ENERGY SYSTEMS

Eine Welt, eine Aufgabe!

Mit der Gründung von B+K im Jahr 2012 habe ich es mir zur Aufgabe gemacht, einen Beitrag zur Energie- und Wärmewende zu leisten.

Wir sind überzeugt, dass Reststoffe wesentlich effizienter genutzt werden sollten. Um dies zu erreichen, entwickeln wir dezentrale Kraft-Wärme-Kopplungssysteme, die als Kernstück unsere luftgelagerten Mikrogasturbine kombinieren.

BESCHREIBUNG DES UNTERNEHMENS

Das Kerngeschäft ist die Entwicklung, Produktion und der Vertrieb von innovativen Lösungen und hochwertigen Anlagen zur regenerativen, ressourcenschonenden Energiegewinnung aus verschiedenen holzartigen Reststoffen.

SUCCEEDING ENERGY SYSTEMS

2012 gegründet

Schwerpunkt Produktion: dezentrale Energieumwandlungssysteme auf Basis von Mikrogasanlagen

25 Mitarbeiter

Projektierung, Engineering und Anlagenbau aus einer Hand

Spezialisierung auf Mikrogasturbinen in der extern befeuerten Anwendung

Standorte in Berlin und Cottbus

Innovationspreis Berlin-Brandenburg + Wissenschaftstransferpreis

Weltweites Partnernetzwerk

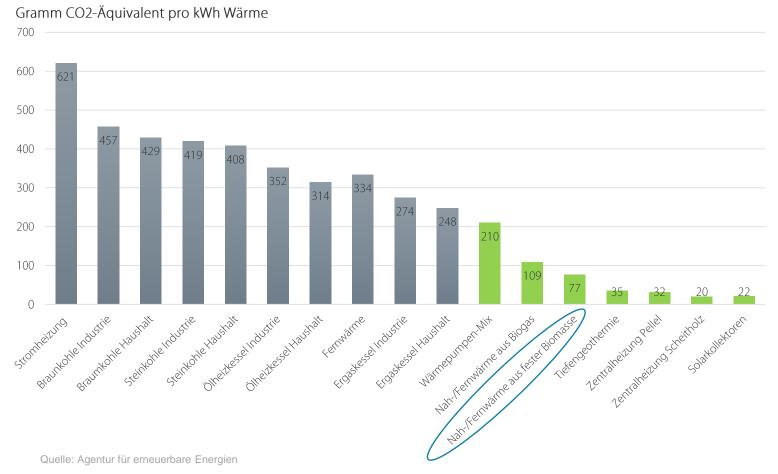
PROBLEMBESCHREIBUNG

Energiewende im Gebäudesektor als Mittel zum Klimaschutz.

Gebäudesektor Deutschland

35 %

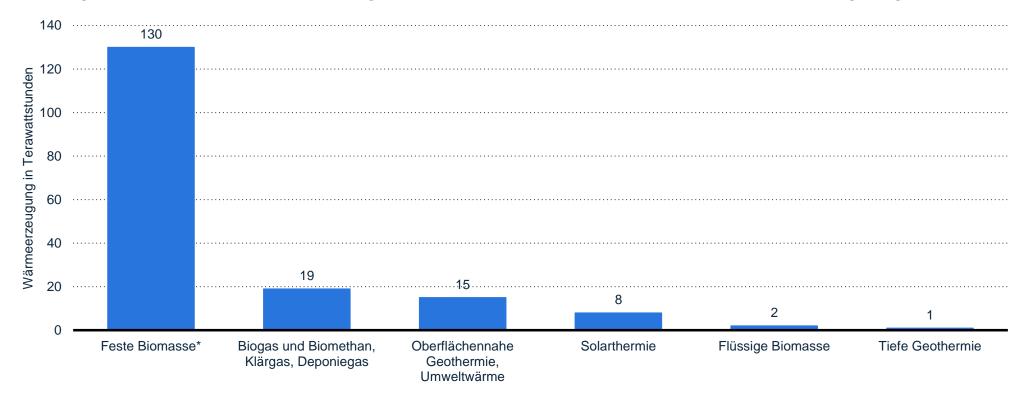
des gesamten deutschen Endenergieverbrauchs 30 %


der CO2-Emissionen von Deutschland

- In Deutschland sind Wohn- und Nichtwohngebäude für etwa ein Drittel des gesamten Energieverbrauchs und der CO2-Emissionen verantwortlich.
- Der Anteil der erneuerbaren Energien am Endenergieverbrauch für Wärme und Kälte liegt bei nur 15,2 % .
- Für eine erfolgreiche Energiewende ist es notwendig, mehr erneuerbare
 Energien im Gebäudesektor einzusetzen.

PROBLEMBESCHREIBUNG

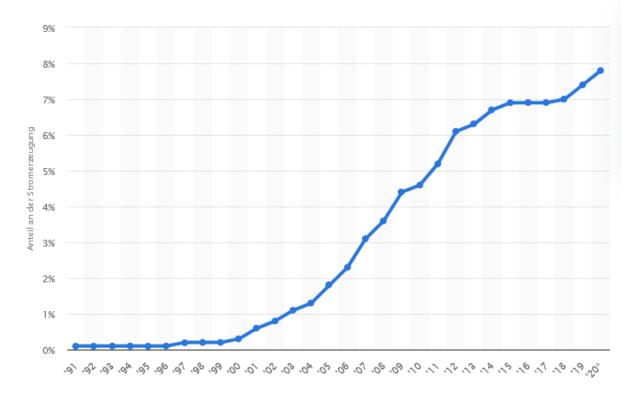
Große Unterschiede bei der Technik zur Wärmeerzeugung in Bezug auf CO2.


- Große Unterschiede der CO2-Emissionen je nach Technik.
- Große Potenziale zur CO2-Einsparung bei der EE-Energieerzeugung.
- Quartiere und Nahwärme → Die
 Maßnahmen, die im kleinen Maßstab
 (Quartiere, Nahwärmenetze) umgesetzt
 werden, bestimmen das Leitbild.
- Insb. im Wärmesektor bislang noch wenig
 Integration der EE-Technologien.
- Kommunen und Nahwärmeversorgern kommt eine entscheidende Rolle bei der Technologieumstellung zu.

ROLLE DER BIOMASSEVERSTROMUNG

Wärme - Biomasse als Schlüsseltechnologie der Wärmewende.

Endenergieverbrauch aus erneuerbaren Energien im Wärmesektor in Deutschland im Jahr 2019 nach Energieträger (in Terawattstunden)

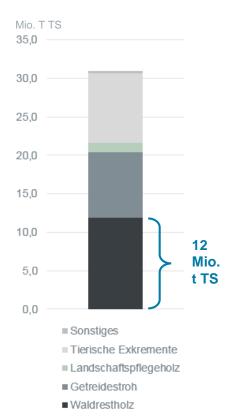

Quelle: BMWi; ID 156485

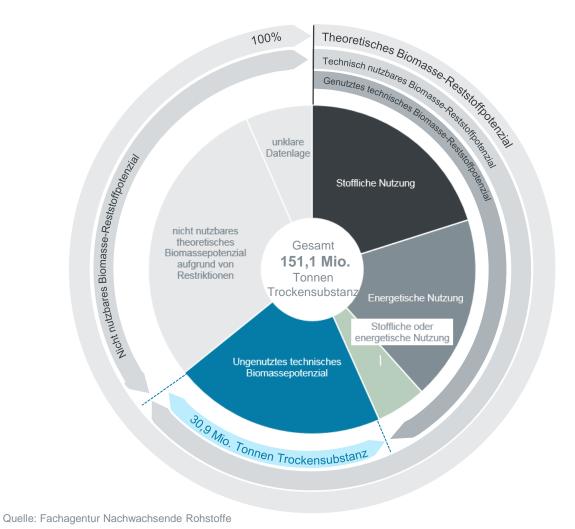
ROLLE DER BIOMASSEVERSTROMUNG

Strom - Biomasseverstromung im Strombereich als Unterstützungstechnologie.

Anteil der Biomasse an der Bruttostromerzeugung in Deutschland in den Jahren 1991 bis 2020

- Biomasseverstromung kombiniert erneuerbare Energien und KWK.
- CO2-Steuer-freie Technologie
- Die nicht-volatile Energieerzeugung wird durch eine "Grundlastbeisteuerung" ersetzt (gute Kombination von Technologien als Alternative zur Flexibilität).
- In Kombination mit BHKWs, welche
 Lastspitzen versorgen, optimal.
- Erst der richtige Technologiemix
 (Puzzle) schafft die besten


 Voraussetzungen für eine erfolgreiche
 Energiewende.

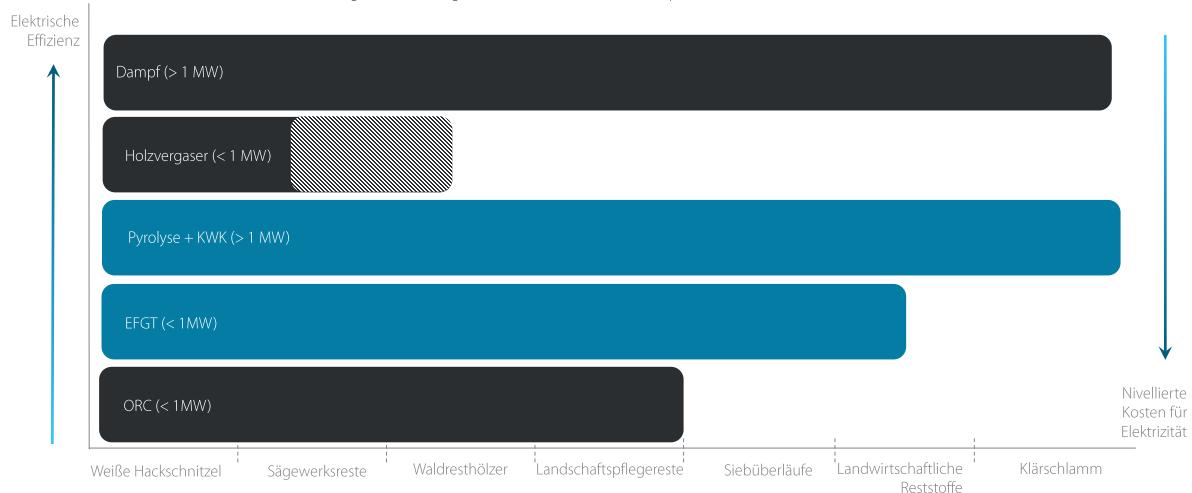


ERWEITERUNGSPOTENZIALE

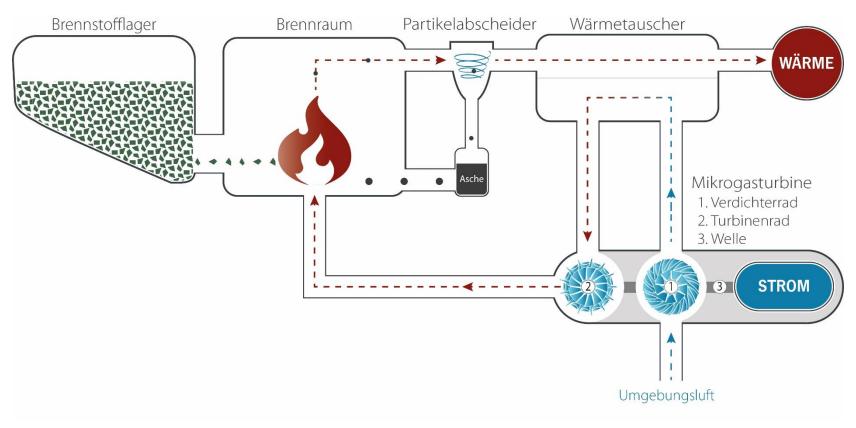
Hat die energetische Biomassenutzung noch weitere Potenziale?

Mit 12 Mio. Tonnen ungenutztem Trockensubstanz ließen sich theoretisch jährlich ca. 12.000 Biomasse-KWK-Systeme (150 kWel) betreiben.

Kriterien für eine umweltgerechte Biomasse-KWK


- Nutzung von Reststoffen, bei welchen eine stoffliche Nutzung verhältnismäßig nicht mehr möglich ist.
- Der regionale Bezug der Brennstoffe.
- Dezentrale Verwertung von
 Reststoffen, insb. wenn diese alternativ
 CO₂ durch den Abtransport
 verursachen würden.
- Mit einer dezentralen Verwertung wird eine Erschließung einer weiteren Brennstoffgruppe auf ökologische Art ermöglicht.

KWK FÜR BIOMASSE


Verschiedene Technologien zur Verstromung von fester Biomasse im dezentralen Bereich. Je nach Brennstoff unterscheidet sich die bestmögliche Technologie. Mit der EFGT können Reststoffpotenziale erschlossen werden.

FUNKTIONSWEISE EFGT

Eine Brennkammer kombiniert mit einer extern befeuerten Mikrogasturbine. Zwei Gasströme sind durch den Wärmetauscher voneinander abgegrenzt, sodass keine Rauchgaspartikel in den Luftstrom der Turbine gelangen.

MIKROGASTURBINE

SYSTEMKOMPONENTEN

Bewährte Bauweise trifft auf innovative Technologie und Materialien.

BRENNSTOFFE

Die EFGT bietet ein weites Brennstoffspektrum – eine Technologie, viele Brennstoffe.

Körnung: P16-P45 Aschegehalt: bis zu 2 Prozent

BEISPIELE

Waldrestholz

Kronenholz, Wurzelholz, Derbholz, Schwachholz, Waldpflegeholz

Industrierestholz

Sägespäne, Sägemehl, Holzverschnitt, Hackschnitzel, Schwarten, Holzstäube

Landschaftspflegeholz

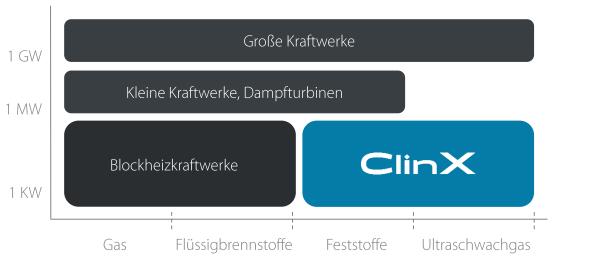
Straßenbegleitholz, Holz aus der Pflege von Parks und Biotopen

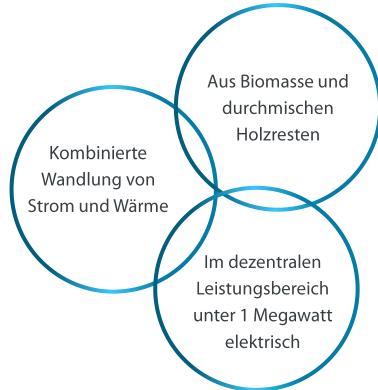
Schadholz

Schnee- oder Sturmbruchholz, Holz mit Schädlingsbefall (z. B. durch Borkenkäfer)

TECHNISCHE DATEN

ClinX ist in zwei Leistungsgrößen erhältlich


	Clin×50	Clin×150
Elektrische Bruttoleistung	50 kW _{el}	150 kW _{el}
Eigenbedarf Anlage	max. 10 kW _{el}	max. 20 kW _{el}
Thermisch Nutzbare Leistung	bis zu 150 kW _{th}	bis zu 400 kW _{th}
Vorlauf-/ Rücklauftemperaturen	90/70 oder 80/60 °C	90/70 oder 80/60 °C
Brennstoffverbrauch	ab 1,02 kg/kWh _{el} _brutto	ab 0,9 kg/kWh _{el} _brutto
Dimensionen	2 Stk. 20' Container	2 Stk. 40' Container
Feuerungswärmeleistung	350 kW	850 kW



ALLEINSTELLUNGSMERKMAL

Die Besonderheit von ClinX ergibt sich aus der KWK-Technologie in Kombination mit Dezentralität und Brennstoffflexibilität. Im Vergleich zu marktüblichen KWK-Systemen in dieser Leistungskasse wandelt ClinX wesentlich heterogenere Brennstoffe, sowohl in Wärme als auch in Strom.

ANWENDUNGSBEREICHE

Auch in Bereichen, in welchen keine Reststoffe direkt anfallen, kann die Technologie lohnend sein.

CASE STUDY

Ein Anwendungsbeispiel für die EFGT im Nahwärmebereich.

- Nahwärmeversorgung für 9 Objekte (größere Wohngebäude und öffentliche Gebäude).
- Heizungsnetz mit 100 % erneuerbarer Energie.
- Als Brennstoff Waldrestholz; Brennstoff wird komplett zugekauft (40 €/t).
- Im Sommer wird Kälte eingeplant.
- In Zukunft werden weitere Wohngebäude angeschlossen, die dann die Brennstoffvortrocknung ersetzen.
- Die Amortisationszeit beträgt 4,9 Jahre (bei 9
 Objekten, mit jedem neuen Objekt besser).

WIRTSCHAFTLICHKEIT

Voraussetzungen für einen wirtschaftlichen EFGT-Betrieb.

Positive Faktoren für die Amortisationszeit:

- Hohe und konstante thermische Grundlast (Prozesswärme, Warmwasser, etc.)
- Hoher Eigennutzungsgrad der bereitgestellten elektrischen Energie (> 70%)
- Hoher elektrischer Grundlastbedarf (mindestens 50% der Anlagen-Nettoleistung)
- Eigene Reststoffe mit einem bisherigen Verkaufspreis <45 € / t

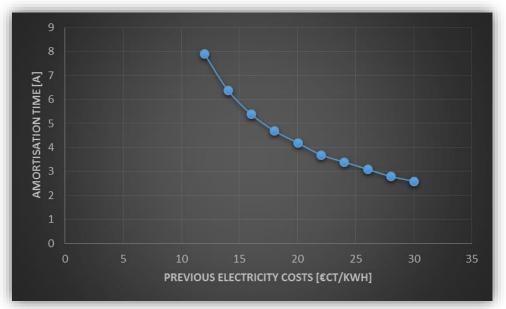
Realisierbare Amortisationszeiten von ClinX

Holzindustrie

Forst- und Landwirtschaft

Hotels und Wellness

3 bis 5 Jahre Amortisationszeit

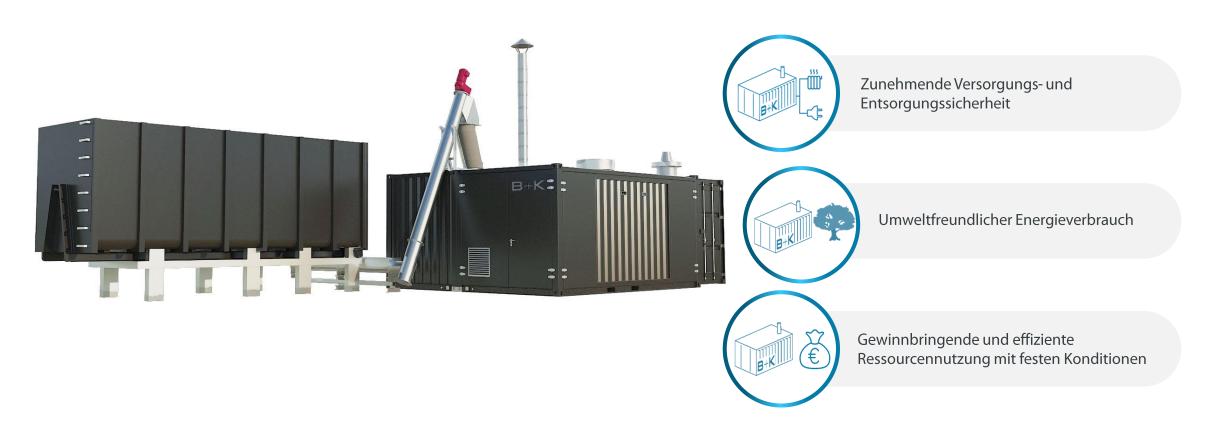


Öffentliche Gebäude

Nahwärmenetze

4 bis 8 Jahre Amortisationszeit

Annahmen: Projektinvestition 750.000 €; Brennstoffkosten 45 €/t; LHV 4 kWh/kg Brennstoffbedarf 158 kg/OH; OPRHS 8.000 h/a; bisherige Heizkosten 2€ct/kWh; ohne Kapitalkosten


Industrie

3 bis 7 Jahre Amortisationszeit

FAZIT

Anwender von ClinX profitieren auf vielfältige Weise. Die Anlage rechnet sich dank niedriger Energiegestehungskosten, minimierter Transport- und Logistikkosten und ggf. vermiedener Reststoffentsorgungskosten.

