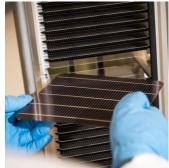
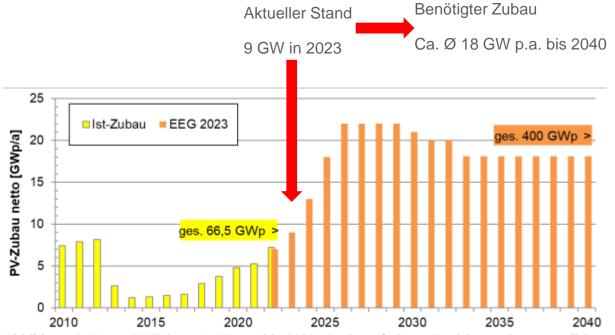


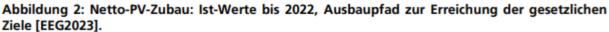
Oxford PV

Unternehmenspräsentation


11. September 2023 Clusterkonferenz Energietechnik

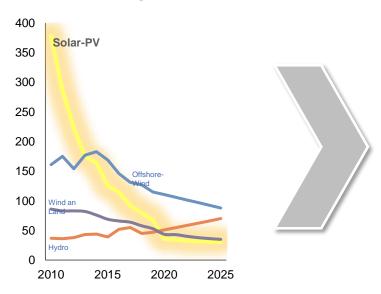
Frank Nowroth Geschäftsführer / CFO

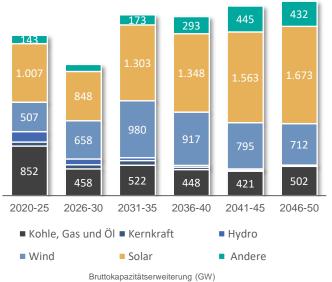




PV-Zubau in Deutschlang seit 2010

Geplanter Zubau von ca.400 GWp bis 2040




Solar ist die am schnellsten wachsende **Energiequelle**

Die Kosten der Photovoltaik sind wettbewerbsfähig ...

LCOE-Vergleich - erneuerbare Energiequellen (USD/MWh)

... macht die Solarenergie zu einer wichtigen Energieguelle

Quellen: Bloomberg New Energy Finance; IRENA 2019; IEA

Oxford PV auf einen Blick

Daten und Fakten

Über Oxford PV

Gegründet 2010 als Spin-off der Oxford Univertsity

Eigenkapital 170 Mio GBP durch Investoren

Gefördert mit 10 Mio € durch GRW der ILB

Standort Oxford Forschung & Entwicklung

HQ mit F&E Einrichtungen in Oxford

65 Mitarbeiter

Standort Brandenburg Pilot- und Produktionsline

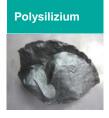
Pilotlinie seit 2017, Produktionslinie in Betrieb seit Mitte 2023, 17.000 m² Fläche
90 Mitarbeiter. Ausbau auf 120 bis Mitte 2024

IP-Portfolio Nr. 1

530+ angemeldete oder erteilte Patente. Größtes Perovskite-Patentportfolio der Welt inkl. wesentlicher Grundlagen-Patente

Laborzelle mit 29,5%

Zertifizierte Rekordzelle von Oxford PV im Jahr 2021


Kommerzielle Zelle mit 28.6%

Aktueller zertifizierter Weltrekord von Oxford PV in kommerzieller Größe

Das Oxford PV-Produkt

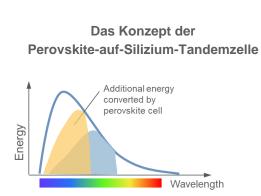
Die Perovskite-Silizium-Tandem-Solarzellen

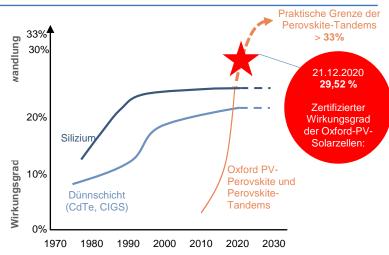
Solare Wertschöpfungskette

"Handelsübliche" Siliziumzellen stoßen an die praktische Grenze von 26 %

Oxford PVs firmeneigene 'Plugand-Play'-Perovskite-PV-Technologie in Kombination mit Silizium-Solarzellen

20%-50% mehr Leistung (1)

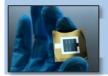

von Oxford PVs Perovskite-auf-Silizium-Tandem-Solarzellen



Perovskite verändern die Solareffizienz

Steigerung der Leistung und damit auch Senkung der Energiekosten

Perovskite ist ein Hybridmaterial aus organischen und anorganischen Materialien, da vollkommen synthetisch hergestellt werden kann



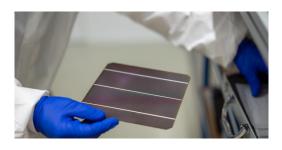
Die aktuelle Entwicklung der Perovskite-on-Si Technolgie auf der Ebene von Laborzellen

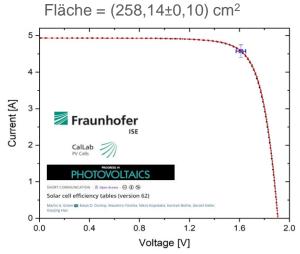
7. Juli 2022 31.25%

Swiss Center for Electronics and Microtechnology (CSEM) & École polytechnique fédérale de Lausanne (EPFL) 20.12.2022 32.50%

Helmholz-Zentrum Berlin (HZB)

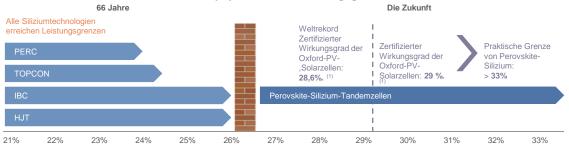
16.02.2023 33,20%


King Abdullah University of Science and Technology Saudi-Arabien (KAUST)



Weltrekord für Vollwafer-Tandemzellen - 28,6%

24.05.2023: Wirkungsgrad der M4-Tandemzelle am Fraunhofer ISE zertifiziert



Oxfords Perovskite-Technologie - Leistungsdichte

Trotz starker technologischer Fortschritte stoßen die etablierten Zellen auf Siliziumbasis jetzt an ihre physikalischen Leistungsgrenzen

1,2 kw Leistung entsprechen ca.1.200 kWh pro Jahr mehr Energie zur Verfügung

20% mehr Leistung (2)

Quelle: BNEF New Energy Finance ("BNEF"), Unternehmensinformationen.

Anmerkungen: (1) Erstes Produkt im Jahr 2022, aber zukünftiges Produkt mit bis zu 50% mehr Leistung. (2) Referenz ist eine PFRC-Zelle mit 22 % Effizienz

Mit 1kWh können Sie folgendes mit Energie versorgen:

- •15 bis 20 Liter Wasserkochen (Wasserkocher mit 2.000 W)
- •60 bis 120 Minuten die Geschirrspülmaschine laufen lassen
- •2 ½ Tage den Kühlschrank betreiben (bei 150 kWh Jahresverbrauch)
- •1 2 Waschmaschinenladungen bei 30° C waschen
- •0,3 bis 0,9 Stunden Klimaanlage (2.000 3.000 Watt)
- •2 Stunden Wärmepumpe (bei 5.000 kWh pro Jahr)
- •100 Stunden LED-Lampe mit 10 Watt leuchten lassen
- •13 Stunden Fernsehen (75 W)
- •66-mal das Smartphone laden (bei 15 W)
- •400 Stunden Stand-by je Elektrogerät im Haushalt (bei 2,5 W)
- •5,5 Kilometer E-Auto fahren (bei einem Verbrauch von 18 kWh/100 km)
- •80 bis 120 km E-Bike fahren

Die Möglichkeiten für spezielle Anwendungen

Perovskite-Solarzellen für Produkte, die hohen Energiebedarf auf kleiner Fläche benötigen

Vielen Dank für Ihre Aufmerksamkeit

Frank Nowroth

Geschäftsführer & CFO der Oxford Photovoltaics Ltd.